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Abstract-The breakdown of liquid films may be the cause of burnout in the higher quality regimes of 
two-phase steam-water flow. An investigation of the breakdown of the liquid film in air-water 
annular flow is reported, which shows that the films can exist in a metastable state and will not break 
down unless there is an external disturbance. If such a disturbance is provided in the form of a dry 
patch on the solid surface then the minimum water flow rate at which the patch will be re-wetted 

decreases as the velocity of the gas phase increases. 

NOMENCLATURE 

d el, equivalent diameter, inner region [ft]; 
d e23 equivalent diameter, outer region [ft] ; 
K, friction factor, inner region [dimension- 

less] ; 
K, friction factor, outer region [dimension- 

less] ; 
k von Karman constant [dimensionless]; 
m, film thickness [ft]; 
m,, relative film thickness [ft]; 
dp/dl, pressure gradient [pdl/ft2 ft] ; 
r?n, radius of maximum velocity, or zero 

shear [ft] ; 
r01, radius of core rod [ft]; 
r02, inside radius of tube [ft] ; 
Rel, Reynolds number in inner region 

[dimensionless] ; 
Rea, Reynolds number in outer region 

[dimensionless] ; 

>, 
velocity in liquid film [ft/s]; 
liquid friction velocity [2/(702/p~)] 

WI ; 
a+, velocity parameter (U/U*) [dimension- 

less] ; 
Ul, mean velocity in inner region [ft/s]; 
u2, mean velocity in outer region [ft/s]; 
C overall mean velocity in channel [ft/s]; 
WLF, mass flow rate of liquid in film [lb/s]; 
W+ 

’ 
mass flow rate parameter 
( W&h$2pL) [dimensionless1 ; 

t Present address: Department of Chemical Engineer- 
ing, University of Exeter, Exeter, Devon. 

YT 
YfY 

vi+, dimensionless film thickness; 
(Y:h critical value of ut ; 

E, roughness height [ft]; 
8, contact angle [degrees] ; 
tLL> liquid viscosity [Ib/ft s]; 
P-h liquid density [lb/f@]; 
(J, liquid surface tension [pdl/ft]; 
701, shear stress on inner surface [pdl/ft2]; 
702, shear stress on outer surface [pdl/ft2]; 

distance from wall [ft]; 
distance parameter (u*yp~/p~) [dimen- 
sionless]; 

1. INTRODUCTION 

IN EVAPORATIVE heat transfer to two-phase single 
component mixtures (for example, steam and 
water), a critical heat flow is observed, above 
which a less efficient regime of heat transfer 
takes over. This transition is commonly referred 
to as the “burnout”, or “dry-out”, heat flux. 
At higher quality,: the regime of flow is often 
annular; the liquid flows partly in the form of a 
film on the channel wall and partly as droplets 
entrained in the gas phase. In this flow regime, 
the critical heat flux almost certainly corre- 
sponds to the breakdown of the liquid film on 
the heater surface. The film would, of course, 
disappear when all the liquid flowing in it had 
been evaporated away, but breakdown may occur 
before complete evaporation. 

: “Quality” here refers to the ratio of the vapor 
phase mass flow rate to the total mass flow rate. 

781 
H.M.-3B 



782 G. F. HEWITT and 1’. M. C. LACEY 

Hartley and Murgatroyd [I] have considered 
the stability of a flowing film in terms of two 
criteria, based respectively on a force balance at 
a dry patch and on energy flow considerations. 
The two approaches yield rather similar results 
except that the force balance criterion depends 
strongly on the wetting angle; in the present 
paper we shall confine attention to this case. 

Hartley and Murgatroyd dealt with a number 
of types of film flow and particularly with 
annular flow in which the film’s motion was 
caused by surface shear only. For any given 
system, their theory indicates that the “minimum 
wetting rate”, i.e. the minimum liquid flow 
rate required to re-wet the surface after the 
formation of a dry patch, decreases with 
increasing gas rate. 

It may be noted that the existence of a dry 
patch is an essential condition in the above- 
mentioned analysis; if the surface is already 
wetted, then the flow rate could quite possibly be 
reduced below the “minimum wetting rate” 
without breakdown of the film. The film in this 
latter case would be metastable and some 
mechanism for breaking it down would be 
required. This point will be returned to below. 

The object of the experiments to be described 
was to investigate the film breakdown phenom- 
enon under carefully controlled experimental 
conditions and to provide data for quantitative 
comparatison with the theoretical studies. 

2. EXPERIMENTAL 

The experiments were carried out with 
air/water flow at room temperature and at 
pressures slightly above atmospheric. The air 
and water supply system was similar to that 
previously described elsewhere [2, 3, etc.]; air 
was derived from the site main and metered by 
an orifice plate and water was recirculated by a 
centrifugal pump and metered with Rotameters. 

Film breakdown was studied by artificially 
producing a dry patch using an air jet directed 
at the wall of the flow tube, and the apparatus 
used in the initial experiments is sketched in 
Fig. 1. 

Air was fed in through the bottom of the 1) in 
bore acrylic resin flow tube and passed through 
a calming length of several feet before meeting 
the water, which entered the tube smoothly 

B :I 
‘Aw let 

causing dry 
patch on “ali 

/ Llquld f,lm 

1 % in bore acrylic 

/ row” tube 

Water I” through 
DOW”5 bronze 

- soct~on of tube 

FIG. 1. Flow tube diagram for initial experiments 

through a porous wall section, A. A dry patch 
was made in the liquid film on the tube wall by 
simply blowing air through the capillary tube B. 
The air jet was then turned off and the subse- 
quent behaviour of the dry patch was studied. 
The object was to reduce the liquid flow rate in 
successive trials until the dry patch became 
permanent; it was found, however, that long 
before the liquid flow had been reduced to the 
point where it failed to re-cover the dry patch, 
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FIG. 2. Variable area flow channel. 

breakdown started to occur at the injector and 
also at point C where the air-jet tube entered 
the flow tube. The initial method was therefore 
abandoned and a new one sought. 

The experimental arrangement finally used is 
shown in Fig. 2. (For space reasons, very different 
scales have been used in the vertical and hori- 
zontal directions, in the ratio of 25:l). This 
arrangement depended for its effectiveness on the 

assumption that the Hartley-Murgatroyd theory 
was valid, in that at higher air velocities the 
surface would be more easily wetted. 

A climbing film was made to form as above, 
on the wall of a 1) in bore acrylic resin flow 
tube, but in the modified test section the air was 
accelerated at the liquid injection point to 
stabilize the film in this rather sensitive area. The 
air was then decelerated before entry to the 
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region of the tube used for the stability tests, and 
then accelerated again at the outlet. This varia- 
tion in gas velocity was achieved by using a 
variable cross-section metal core in the centre of 
the flow tube. 

After entering the channel through a tee- 
piece at A, the air flowed through a 32-in annular 
calming section l& in o.d. by 8 in i.d., and then 
gradually accelerated as it flowed past the very 
gently tapered section of the core at B. In the 
annular space, C, which was 3 ft long, the water 
was injected at a point about 2 ft from the 
entrance, to form a film on the inner surface of 
the outer wall. At the low water rates being 
employed in these experiments the entrainment 
was minimal and the liquid remained sub- 
stantially in the film; the core therefore re- 
mained dry. The water injector used was of the 
porous sinter type and was an improved version 
of the described previously [4], particular care 
being taken to ensure circumferential uniformity 
of flow. 

the minimum wetting rate, and to reduce the 
liquid rate in stages. For each liquid flow rate, 
the pressure drop was measured and a dry patch 
formed by flowing. If the dry patch was re- 
wetted on cessation of the air jet, the Iiquid rate 
was reduced again and the procedure repeated. 
Once the minimum wetting rate had been 
reached, the liquid flow rate was first increased, 
to re-wet the surface, and then was further re- 
duced in small steps until the film broke down 
spontaneously (i.e. without the artificial forma- 
tion of a dry patch) and the rate at spontaneous 
breakdown was noted. 

The results of the minims wetting rate 
measurements are shown in Fig. 3. The water 
rate was reduced by approximately 2 lb/h for 
each successive dry patch test. Each minimum 
wetting rate, therefore, falls between two limits; 

At the end of section C the air was reduced 
in velocity by a factor of about 1.7 by tapering 
the core down to 4 in diameter, and the next 5 ft 
of that channel (D) were used for the stability 
tests; this portion will in future be referred to 
as the “test section”. The air was then accelerated 
again to provide a stable fiim at the outlet. In the 
“test section” region a hole was drilled in the 
wall of the core tube to allow a jet of air to be 
blown on to the climbing film on the flow tube, 
to provide the dry patch. The air for this was 
supplied via the bottom end of the core tube. 
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It is essential in the theoretical analysis to have 
data on pressure gradient in the test section, and 
pressure and pressure difference measurements 
were made by means of stainless steel capillary 
tubes soldered into the core tube wall. The ends 
of these tubes were ground down flush with the 
core tube surface and the whole of the core was 
carefully polished, particular care being taken to 
avoid roughnesses at the joins between the 
tapered and straight sections. Satisfactoryconcen- 
tricity of the core and the flow tube at the test 
section was obtained by manipulation of the 
centering screws and the top and bottom 
flanges. 
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FIG. 3. De-wetting experimental data. 
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at the upper the surface is re-wetted and at the 
lower the dry patch is permanent. No attempt 
was made to obtain a more precise figure for 
minimum wetting rate and the results are 
plotted as bar-lines between the two limits. It 
will be observed that in the higher gas rate 
region the minimum wetting rate does decrease 
with increase in gas rate, in agreement with the 
Hartley and Murgatroyd theory. At lower gas 
rates, however, the minimum wetting rate passes 
through a maximum and begins to decrease with 
decreasing gas rate. This latter trend is also to be 
expected, since the boundary between the 
climbing film and churn flow regimes is being 
approached (see reference 6 for map of regimes); 
at lower water flow rates this regime boundary 
is independent of water rate, and near the 
boundary it is possible [6] to have a film of 
liquid maintained in an equilibrium state on the 
tube wall with no net feed of water into it: in 
this extreme case, therefore, the minimum 
wetting rate is zero. 

The form the dry-patch took was interesting; 
at water rates above the minimum wetting rate 
the patch was more or less circular. The re- 
wetting of the surface took place in a complex 
manner, usually by splitting of the dry patch by 
rivulets, followed by the erosion of the ends and 
sides of the resultant secondary patches. The 
time required for re-wetting increased as the 
water flow rate decreased; this increase in patch 
life-time was rapid as the minimum wetting rate 
was approached. The initial patch was about 8 in 
diameter. When, on the other hand, a dry patch 
was formed at water rates below the minimum 
wetting rate, a dry streak was often formed 
downstream of the drying point. This streaking 
effect was most pronounced at the higher air 
flow rates. 

It will be seen from the lower part of Fig. 3 
that the flow rate for spontaneous breakdown of 
the liquid film is of the order of 2 lb/h, i.e. very 
much lower than the minimum wetting rate. 
Even then, breakdown started at the water 
injector; in no case was true spontaneous 
breakdown observed, i.e. within the film. 

The pressure gradient data are plotted in Fig. 4; 
they show a self-consistent increase with both air 
and water flow rate. Pressure gradient, flow rate 
and physical property data are included inTable 1. 
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FIG. 4. Pressure drop data. 

4. ANALYSIS AND DISCUSSION 

1 

The analysis of the data from the present 
experiments was carried out on the Harwell 
Mercury computer. Using the notation of the 
present paper we may write Hartley and Murga- 
troyd’s equations (29), (30) and (31), [l], based 
on the von Karman universal velocity profile, 
as: 

2 a(1 - cos e) tit)“, 

cLLu* 
= 3 for (u,+)~ < 5 (1) 

2 u(l - cos e) 

pLu* 
= 25 (Y$)~ ln2 (Y;‘)c 

- 805 (J$)~ In (J$)~ + 89.8 ($)c - 82.3, (2) 

for 5 < (~t)~ < 30 
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2 a(1 - cos S) 
= 6.25 (J+)~ In” (y;l-)C 

variable roughness (i.e. the liquid film surface). 

pz u* 
A method for analysing pressure drop data in 

-+ 15 (JQ)~ In (J+)~ + 15.25 (y, )e -- 1084, (3) 
such channels has been developed recently and 
is described in more detail elsewhere [7]. In this 

for (~;t)~ > 30 analytical method, the channel is divided up into 
two regions bounded by the plane of maximum 

where u+ and y+ are defined by u 7 = u/u* and velocity (or zero shear) and by the respective 
y+ = U*.YPL/~L, and where u* (the friction channel walls in the manner developed by Hall 

[8]. This is illustrated velocity), is’ defined as 1/(703/p& PL is the 
liquid viscosity and 7s~ the shear stress at the 
wall. 

in Fig. 5.- Equivalent 

The first aim was to calculate for a given gas 
and liquid rate the appropriate values of U* and 
y+ for insertion into equations (1) to (3). 

If the assumption of constant shear stress 
throughout the liquid film is made, the dimen- 
sionless film thickness, y$, can be calculated from 
the dimensionless film flow rate W+ which is 
defined by: 

where WLF is the mass rate of flow in the film 
(lb/s), ~0s is the tube radius (ft) and PL the 
liquid viscosity (lb/ft s). By insertion of the 
U+ vs y-t. relationships given by the von K&man 
equations [equations 25(a), (b) and (c) of 
reference 1, with W replaced by U] and inte- 
grating, the following equations are obtained 
for the relation between W+ and yi’ : 

W+ = 0.5 (yi+)s for yi+ < 5, ( W+ c 12.5) (5) 

W+ = 12.5 + 5 y+ In (y$/5) (6) 

for 5 < y? < 30, (12.5 < W+ < 281.89) FIG. 5. Regions of flow channel. 

Wf = - 63.61 + 3.05 y$ + 2.5 yt In y$. (7) 

for yi+ > 30, ( Wi- > 281.89) 

The value of W+ is obtained simply from the 
first part of equation (4), and yi+ evaluated by 
solution of equation (5), (6) or (7). In the case of 
equations (6) and (7) this solution is obtained 
iteratively. Values of W+ and y;’ for each con- 
dition at which pressure drop was measured are 
listed in Table 1 (columns 20 and 21). 

The next stage in the analysis is the determina- 
tion of U* [=~/(To~/PL)]. This determination is 
not simple since the flow channel has one 
smooth surface (the core rod) and one of 

diameters, Reynolds numbers and friction fac- 
tors are defined for the two regions as follows [7] : 

& = 2 (YZ - Gl) ) 
r01 

& -_ %&;:_!?? (8, 9) 

Rel = 
UI de1 PG U2 dez PC 

, Re2 = --- 
PG PC 

(10, 11) 

F1=X___ (dpldl) . (&l/4) 

PG u,z pJ7y- ’ 

F2= d?% =__ (d&W . (dez/4) 

pG u; 

Plane Of 
maximum 
velocity 

1 

l.12, 13) 
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Three further equations are also introduced: 

: 

(ii) 

(iii) 

U,(ri - r&) + U2(r& - ri) 

= O(r& - r&) (14) 
where U is the mean gas velocity. 
Smooth pipe law for the inner surface; 
(the Koo equation): 

Fl = O-00070 + 0.0625(Rei)-0.32 (15) 

An equation derived [7] by integration of 
von Karman’s velocity deficiency law 
equation, for each region of the annulus: 

In equations (813), (dp/dl) is the pressure 
gradient, rm the radius of zero shear, rol the 
core rod radius, roe the tube inside radius, and 
PG and PG the gas density and viscosity. Also, 
Vi and UZ and 701 and 702 are the mean velocities 
and wall shear stresses for the two regions re- 
spectively. 

0’1 -= 
u2 

(16) 
k = von Karman universal constant 
(taken as O-368). 

With (dp/dl), PG, PG, rol, 1’02 and U known (as 
in the present experiments) equations (8-16) can 
be solved iteratively [7] to yield values of Rel, 
Rez, del, den, FI, Fz, UI, U2 and rm respectively, 
The computer programme was used to perform 
such an iteration on the present data and the 
results are tabulated in Table 1 (Columns 9-18). 
The liquid friction velocity (u*) on the outer 
wall was then readily calculated (column 22) and, 
using also the value of y;+ calculated as above, the 
contact angle, 8, was calculated from equations 
(l-3). The value of 8 was determined for each 
flow condition at which the pressure drop had 
been measured. The results are tabulated in 
Table 1 (column 27) and are plotted in Fig. 6. 
Each point on this graph represents the theo- 
retical minimum wetting rate (abscissa) for the 
contact angle given by the ordinate at the gas 
rate indicated by the legend. As expected, the 
minimum wetting rate decreases with decreasing 
contact angle and increasing gas rate. By cross- 
plotting of Fig. 6, curves of minimum wetting 

r------I Air rate-lb/h ~- 

& 100 0 250 

0 115 l 300 

A 125 + 350 

. 150 x 400 

0 175 Cl 450 

. 200 . 500 

. 

0 10 20 30 40 50 60 70 

WATER FLOW RATE-Lb/h 

FIG. 6. Calculated contact angles. 

01 I I I I 1 I 
0 100 200 300 400 500 600 

GAS FLOW RATE--L~/~ 

FIG. 7. Comparison of present data with curves for 
constant contact angle 0. 
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rate against gas rate can be obtained for constant Murgatroyd equations should be derived for this 
contact angle, and such curves are plotted in enlarged profile; the equation of motion of the 
Fig. 7 for contact angles of 50”, 40”, 30” and diverging fluid stream would be complex, but 
17”, i.e. the angles theoretically necessary to to a first approximation the total force resisted 
cause film breakdown. The value 17” was by surface forces would be proportional to the 
chosen as giving a curve close to the actual maximum thickness of the film at the bulge, 
experimental minimum wetting rate data (Fig. 3), which would therefore need to rise by a factor 
which are also plotted in this diagram. The of 7.8 over the film thickness. There is no evi- 
agreement in shape with the curve for a wetting dence for such a large increase, and aerodynamic 
angle of 17” is moderately good; the minimum forces on the bulge are likely to provide the 
wetting rate falls below the curve at the lowest largest contribution to the discrepancy. 
and highest gas rates used. The deviation at the Much of the analysis depends on the simpli- 
lowest gas rate is probably due to the approach fying assumption mentioned earlier, that the 
to the regime boundary, as discussed above. shear stress is constant across the liquid film. 

It was of interest to obtain a directly deter- The validity of this assumption can be tested by 
mined value of 0 for the system water/acrylic- comparing the gravitational force on the liquid 
resin-tube/air, and measurements were made film (=mpLg, where m is the liquid film thick- 
using a sessile drop within a short, horizontal ness and g the acceleration due to gravity) with 
section of tube. This was viewed through a 702, the interfacial shear stress. m was calculated 
rotatable telescope provided with a cross wire from y;+ and u*: 
which could be aligned with the tube surface or 
the droplet surface. m = Y? ~21~" PL (17) 

The values obtained for 0 nearly all lay in the and values of m and mpLg/ro2 are presented in 
range 49 f 4”; this included new tubing, tubing Table 1 (columns 23 and 24). It will be seen that 
which had been soaked in water for a long period, mpLg is about 50 per cent of 702 at the lowest gas 
and tubing which had been used for air-water rate (100 lb/h) falling to about 10 per cent at a 
experiments over a period of some years. With gas rate of about 250 lb/h and down to about 
new tubing, there were occasional spots which 2 per cent at a gas rate of 500 lb/h. The error in 
had a higher contact angle-presumably as a 
result of slight greasiness of the surface-but the 
lowest value obtained in all the tests was 45”. 

It is quite probable that the measured static 
contact angle is not the appropriate one for use 
in the Hartley-Murgatroyd theory; an ad- 
vancing edge, however, would experience a 
larger contact angle than the static one. The 
theoretical treatment may not, therefore, be 
valid although it predicts the correct trends. It 
should be noted that the discrepancy in the 
forces involved is large, being in the ratio of 
(1 - cos 49”) to (1 - cos 17”) i.e. 7*8:1. The 
minimum wetting rate is lower than would be 
predicted from the theory and this suggests the 
existence of an extra force tending to re-wet the 
surface. This may possibly take the form of an 
aerodynamic force on the bulge in the film 
which occurs immediately below (i.e. upstream 
of) the dry patch. This “bulge” is caused by the 
rise in static pressure due to the deceleration of 
the liquid, and it can be argued that the Hartley- 

estimating yi- from W+ is much less than the 
error in wall shear stress and no attempt has been 
made to improve the present analysis to take 
account of the gravity term. Approximate 
corrections and analyses relating Wf and y’ are 
described in reference 9 and a rigorous analytical 
method is presented in reference 10. 

The pressure drop data were of interest in 
their own right; in a recent report [5], a method 
was presented for correlating two phase pressure 
drop data at low liquid rates and high gas rates. 
The correlation was obtained by plotting 
calculated roughness height, ( l ), against “re- 
lative film thickness”. The relative film thick- 
ness (m,) was the film thickness (calculated) 
minus the thickness of the laminar sub-layer in 
the gas phase; this parameter was used by 
Hartley and Roberts [l 11. The data were very 
well correlated, but only one tube diameter had 
been used. In the present experiments, the 
equivalent diameter of the subchannel (see Fig. 
5) is not a constant; intuitively, however, one 
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might regard it as permissible to divide both the 
calculated roughness height and the relative 
tilm thickness by the equivalent diameter and 
plot r/&e against m,./& the latter being given 
by: 

mrides = m/d,2 - S/Rez ~/Fz (18) 

For convenience, d/e2 was calculated from the 
Colebrook-White equationf- [12]: 

& = 13.02 In +a2 0,887 
Y f 1 Rez y/I%, (19) 

The results of these calculations are given in 

t In the correlation given in reference 5, the gas 
boundary thickness was calculated as 5/&q/(&) where 
FG is for the smooth pipe. Also, the Nikuradse curve was 
used for calcufating E; this is different from the Cole- 
brook-White curve in the rough-smooth transition 
region. Neither of the changes made will affect the results 
seriously, 

Table 1, and e/de2 is plotted against mr/de2 in 
Fig. 8. For total air rates above about 150 lb/h 
the results fall fairly well on to a single curve. 
(It should be borne in mind that as equation (19) 
is logarithnic a fairly large error in estimating 
( e/dez) gives rise to only a small error in estimat- 
ing Fz.) The results for air flow rates less than 
150 lb/h fall progressively further from the 
correlating line; this is quite in accord with the 
results given in reference 5 where data at 100 lb/h 
(in a la in bore tube) fall well above the line and 
data at 200 lbjh fell on it. 

The correlating line from reference 5 is plotted 
on Fig. 9 ; the agreement with the present data 
for cjdez -=c 12 x 1O-3 is encouraging. For 
greater roughness ratios, the present data lie on a 
line above that from reference 5. It should be 
borne in mind, however, that the data on which 
the reference 5 line was based were extremely 
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sparse in this region. Bearing in mind the extent randum QS, Queen Mary College, London \I 961). 

of the transformations required in the present Inf. J. Heat Muss Transfer, 7, 1003 (1964). 

data, the results given in Fig. 9 give confidence 2. G. F. HEWITT, I. KING; and P. C. LOVEGROVE, 

in the method of analysis. 
Techniques for liquid measurements in the two-phase 
annular flow of air water mixtures, Brir. Chenr. 

5. CONCLUSIONS 

The results of the experiments shown above 
have demonstrated that, at least for higher gas 
rates, the minimum wetting rate decreases con- 
tinuously with increasing gas rate. This is in 
agreement with the trend predicted by Hartley 
and Murgatroyd but there appears to be a large 
discrepancy between the contact angle required 
to satisfy this theory and that measured. This 
may indicate that there is an important additional 
force, possibly aerodynamic, which promotes 
wetting. At lower gas rates, as the regime 
boundary between climbing film and churn 
flow is approached, the relationship between 
minimum wetting rate and gas flow rate reverses. 

Spontaneous breakdown of the liquid film 
from within itself was not observed in any of the 
present experiments; breakdown at the liquid 
injector occurred at flow rates about an order of 
magnitude smaller than the “minimum wetting 
rate”, the latter being the water rate required to 
re-cover an artificial dry-patch. This result is of 
importance in burnout considerations; the liquid 
film will possibly not breakdown when it 
becomes metastable but evaporation may con- 
tinue until the film is depleted almost to zero 
flow. This conclusion assumes, of course, that 
the heat-transfer process itself cannot provide 
the initiating force (analogous to the transverse 
air jet in the present experiment) for breakdown. 
Breakdown might be started by Marangoni 
forces as discussed by Norman and McIntyre 
1131 or by bubble nucleation. 
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R&umB-La disparition des films liquides peut dtre la cause de la destruction par surchauffe dans les 
regimes d%coulement diphasique vapeur d’eau-eau & grande teneur en vapeur d’eau. Une recherche 
de la disparition du film liquide dans l’&coulement annulaire airxau est expos&e, qui montre que les 
films peuvent exister dans un &at mCtastable et ne se briseront pas B moins qu’il y ait une perturbation 
extkrieure. Si une telle perturbation est fournie sous la forme d’une tache &he sur la surface solide, 
alors de debit minimal d’eau pour lequel la tache sera remouillde diminuera lorsque la vitesse de la 

phase gazeuse augmente. 
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Zusammenfassung-Der Zusammenbruch des Fliissigkeitsfihnes kann vielleicht die Ursache ftir den 
Burnout in den hoheren Qualitltsbereichen eines zweiphasigen Dampf-Wasserstromes sein. Ftir das 
Zusammenbrechen eines Fhissigkeitsfihnes in einer Luft-Wasserringstromung wird eine Unter- 
suchung angeftihrt, die aufzeigt, dass die Filme in einem metastabilen Zustand bestehen kiinnen und 
sich nicht auflosen bis eine Stbrung von aussen auftritt. Wenn so eine Stbrung in Form einer trockenen 
Stelle an der festen Oberflache vorkommt, dann nimmt die minimale Wasserstromgeschwindigkeit, 
bei der die Stelle wieder benetzt werden kann, ab unter Geschwindigkeitszunahme der Gasphase. 

AHHoTaqiJr-Pa3pyuxeK~e =HAKHX IIJIeHOK MOPKeT 6bITb IIpIiWHOti BbIrOpaHllR B 6OJIee 

B~ICOKYIX pemwax AByx@asHoro norona nap-Bona. Hponeneao nccne~onaane paapymennn 
*xingnoa nnennn B KOJIbqeBOM rIOTOKe B03JJYX-BOaa, KoTopoe noKa3bmaeT YTO IIJreHKH ~0ryT 

CyQeCTBOBaTb B MeTaCTa6IUIbHOM COCTORHHH II He pa3pyIIIaThCRr[O Tex IIOp,ZOKaHeTBKeIU- 

HerOB03MyIIJeHHR. Ecxn ~IMeeTC~BO3My~eH~eBBEl~eCyXOrOy~aCTKaHaTBep~O~~OBepXHO- 

CT&f, MIlHRMaJIbHaFI CKOpOCTb Te9eHIWl BOW, IIpH KOTOpOM y"aCTOK ByneT CHORa CMOqeII, 

yxeabnraeTcfl rro Mepe ynenwreK~fl ~KO~OCTH rasonoti $aahI. 


