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Abstract—The breakdown of liquid films may be the cause of burnout in the higher quality regimes of

two-phase steam—water flow. An investigation of the breakdown of the liquid film in air-water

annular flow is reported, which shows that the films can exist in a metastable state and will not break

down unless there is an external disturbance. If such a disturbance is provided in the form of a dry

patch on the solid surface then the minimum water flow rate at which the patch will be re-wetted
decreases as the velocity of the gas phase increases.

NOMENCLATURE

de1, equivalent diameter, inner region [ft];

de2, equivalent diameter, outer region [ft];

F, friction factor, inner region [dimension-
less];

F,, friction factor, outer region [dimension-
less];

k, von Kdrman constant [dimensionless];

m, film thickness [ft];

my, relative film thickness [ft];

dp/dl, pressure gradient [pdi/ft? ft];

rm, radius of maximum velocity, or zero
shear [ft];

ro1, radius of core rod [ft];

roz,  inside radius of tube [ft];

Re;, Reynolds number in inner region
[dimensionless];

Res, Reynolds number in outer region
[dimensionless];

u, velocity in liquid film [ft/s];

u*, liquid friction velocity [v/(7o2/pL)]
[ft/s];

ut, velocity parameter (u/u*) [dimension-
less];

Ui, mean velocity in inner region [ft/s];

Uz, mean velocity in outer region [ft/s];

0, overall mean velocity in channel [ft/s];

Wir, mass flow rate of liquid in film [Ib/s];

W+, mass flow rate parameter

(Wir/2mrozpr) [dimensionlessl;

¥, distance from wall [ft];

yt,  distance parameter (#*ypr/ur) [dimen-
sionless];

¥y,  dimensionless film thickness;

(), critical value of y;";

€, roughness height [ft];

8, contact angle [degrees];

pr,  liquid viscosity [Ib/ft s];

pL, liquid density {Ib/ft3];

a, liquid surface tension [pdl/ft];

To1, Shear stress on inner surface [pdl/fi2];

T2, shear stress on outer surface [pdl/fe?];

1. INTRODUCTION

IN EVAPORATIVE heat transfer to two-phase single
component mixtures (for example, steam and
water), a critical heat flow is observed, above
which a less efficient regime of heat transfer
takes over. This transition is commonly referred
to as the “burnout”, or ‘“‘dry-out”, heat flux.
At higher quality,} the regime of flow is often
annular; the liquid flows partly in the form of a
fitm on the channel wall and partly as droplets
entrained in the gas phase. In this flow regime,
the critical heat flux almost certainly corre-
sponds to the breakdown of the liquid film on
the heater surface. The film would, of course,
disappear when all the liquid flowing in it bad
been evaporated away, but breakdown may occur
before complete evaporation.

t Present address: Department of Chemical Engineer-
ing, University of Exeter, Exeter, Devon.
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1 “Quality” here refers to the ratio of the vapor
phase mass flow rate to the total mass flow rate.
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Hartley and Murgatroyd [l] have considered
the stability of a flowing film in terms of two
criteria, based respectively on a force balance at
a dry patch and on energy flow considerations.
The two approaches yield rather similar results
except that the force balance criterion depends
strongly on the wetting angle; in the present
paper we shall confine attention to this case.

Hartley and Murgatroyd dealt with a number
of types of film flow and particularly with
annular flow in which the film’s motion was
caused by surface shear only. For any given
system, their theory indicates that the “minimum
wetting rate”, i.e. the minimum liquid flow
rate required to re-wet the surface after the
formation of a dry patch, decreases with
increasing gas rate.

It may be noted that the existence of a dry
patch is an essential condition in the above-
mentioned analysis; if the surface is already
wetted, then the flow rate could quite possibly be
reduced below the ‘“minimum wetting rate”
without breakdown of the film. The film in this
latter case would be metastable and some
mechanism for breaking it down would be
required. This point will be returned to below.

The object of the experiments to be described
was to investigate the film breakdown phenom-
enon under carefully controlled experimental
conditions and to provide data for quantitative
comparatison with the theoretical studies.

2. EXPERIMENTAL

The experiments were carried out with
air/water flow at room temperature and at
pressures slightly above atmospheric. The air
and water supply system was similar to that
previously described elsewhere [2, 3, etc.]; air
was derived from the site main and metered by
an orifice plate and water was recirculated by a
centrifugal pump and metered with Rotameters.

Film breakdown was studied by artificially
producing a dry patch using an air jet directed
at the wall of the flow tube, and the apparatus
used in the initial experiments is sketched in
Fig. 1.

Air was fed in through the bottom of the 1} in
bore acrylic resin flow tube and passed through
a calming length of several feet before meeting
the water, which entered the tube smoothly
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through a porous wall section, A. A dry patch
was made in the liquid film on the tube wall by
simply blowing air through the capillary tube B.
The air jet was then turned off and the subse-
quent behaviour of the dry patch was studied.
The object was to reduce the liquid flow rate in
successive trials until the dry patch became
permanent; it was found, however, that long
before the liquid flow had been reduced to the
point where it failed to re-cover the dry patch,
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breakdown started to occur at the injector and
also at point C where the air-jet tube entered
the flow tube. The initial method was therefore
abandoned and a new one sought.

The experimental arrangement finally used is
shown in Fig. 2. (For space reasons, very different
scales have been used in the vertical and hori-
zontal directions, in the ratio of 25:1). This
arrangement depended for its effectiveness on the

assumption that the Hartley-Murgatroyd theory
was valid, in that at higher air velocities the
surface would be more easily wetted.

A climbing film was made to form as above,
on the wall of a 1} in bore acrylic resin flow
tube, but in the modified test section the air was
accelerated at the liquid injection point to
stabilize the film in this rather sensitive area. The
air was then decelerated before entry to the
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region of the tube used for the stability tests, and
then accelerated again at the outlet. This varia-
tion in gas velocity was achieved by using a
variable cross-section metal core in the centre of
the flow tube.

After entering the channel through a tee-
piece at A, the air flowed through a 32-in annular
calming section 1} in o.d. by # in i.d., and then
gradually accelerated as it flowed past the very
gently tapered section of the core at B. In the
annular space, C, which was 3 ft long, the water
was injected at a point about 2 ft from the
entrance, to form a film on the inner surface of
the outer wall. At the low water rates being
employed in these experiments the entrainment
was minimal and the liquid remained sub-
stantially in the film; the core therefore re-
mained dry. The water injector used was of the
porous sinter type and was an improved version
of the described previously [4], particular care
being taken to ensure circumferential uniformity
of flow.

At the end of section C the air was reduced
in velocity by a factor of about 1-7 by tapering
the core down to } in diameter, and the next S ft
of that channel (D) were used for the stability
tests; this portion will in future be referred to
as the “test section”. The air was then accelerated
again to provide a stable film at the outlet. In the
“test section” region a hole was drilled in the
wall of the core tube to allow a jet of air to be
blown on to the climbing film on the flow tube,
to provide the dry patch. The air for this was
supplied via the bottom end of the core tube.

It is essential in the theoretical analysis to have
data on pressure gradient in the test section, and
pressure and pressure difference measurements
were made by means of stainless steel capillary
tubes soldered into the core tube wall. The ends
of these tubes were ground down flush with the
core tube surface and the whole of the core was
carefully polished, particular care being taken to
avoid roughnesses at the joins between the
tapered and straight sections. Satisfactory concen-
tricity of the core and the flow tube at the test
section was obtained by manipulation of the
centering screws and the top and bottom
flanges.

The procedure adopted was to set the re-
quired air flow rate, and a liquid rate well above
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the minimum wetting rate, and to reduce the
liquid rate in stages. For each liquid flow rate,
the pressure drop was measured and a dry patch
formed by flowing. ¥ the dry patch was re-
wetted on cessation of the air jet, the liquid rate
was reduced again and the procedure repeated.
Once the minimum wetting rate had been
reached, the liquid flow rate was first increased,
to re-wet the surface, and then was further re-
duced in small steps until the film broke down
spontanecusly (i.e. without the artificial forma-
tion of a dry patch) and the rate at spontancous
breakdown was noted.

3, RESULTS
The results of the minimum wetting rate
measurements are shown in Fig. 3. The water
rate was reduced by approximately 2 Ib/h for
gach successive dry patch test. Each minimum
wetting rate, therefore, falls between two limits;
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at the upper the surface is re-wetted and at the
lower the dry patch is permanent. No attempt
was made to obtain a more precise figure for
minimum wetting rate and the results are
plotted as bar-lines between the two limits. It
will be observed that in the higher gas rate
region the minimum wetting rate does decrease
with increase in gas rate, in agreement with the
Hartley and Murgatroyd theory. At lower gas
rates, however, the minimum wetting rate passes
through a maximum and begins to decrease with
decreasing gas rate. This latter trend is also to be
expected, since the boundary between the
climbing film and churn flow regimes is being
approached (see reference 6 for map of regimes);
at lower water flow rates this regime boundary
is independent of water rate, and near the
boundary it is possible [6] to have a film of
liquid maintained in an equilibrium state on the
tube wall with no net feed of water into it: in
this extreme case, therefore, the minimum
wetting rate is zero.

The form the dry-patch took was interesting;
at water rates above the minimum wetting rate
the patch was more or less circular. The re-
wetting of the surface took place in a complex
manner, usually by splitting of the dry patch by
rivulets, followed by the erosion of the ends and
sides of the resultant secondary patches. The
time required for re-wetting increased as the
water flow rate decreased; this increase in patch
life-time was rapid as the minimum wetting rate
was approached. The initial patch was about & in
diameter. When, on the other hand, a dry patch
was formed at water rates below the minimum
wetting rate, a dry streak was often formed
downstream of the drying point. This streaking
effect was most pronounced at the higher air
flow rates.

It will be seen from the lower part of Fig. 3
that the flow rate for spontaneous breakdown of
the liquid film is of the order of 2 Ib/h, i.e. very
much lower than the minimum wetting rate.
Even then, breakdown started at the water
injector; in no case was true spontaneous
breakdown observed, i.e. within the film.

The pressure gradient data are plotted in Fig. 4;
they show a self-consistent increase with both air
and water flow rate. Pressure gradient, flow rate
and physical property data are includedin Table 1.
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FIG. 4. Pressure drop data.

4, ANALYSIS AND DISCUSSION

The analysis of the data from the present
experiments was carried out on the Harwell
Mercury computer. Using the notation of the
present paper we may write Hartley and Murga-
troyd’s equations (29), (30) and (31), [1], based
on the von Kdrman universal velocity profile,
as:

20(1 —cos®) ()3 +
L =73 for (y;)e <5 (1)
20(l — cos b
U(ML u* ) = 25(¥)c In? (¥H)e

— 80-5(¥")e In (¥iF)e + 898 (¥)e — 82:3, (2)
for 5 < () < 30
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20(1 —cos )
pr u*
+ 15 (3)e In (377)e + 15:25(y; ) — 1084, (3)
for (¥;7)e > 30

= 625 (¥ )e In? (37 )e

where u* and y* are defined by u+ = u/u* and
yt = u*ypr/ur, and where w* (the friction
velocity), is defined as +/(ro2/pL). pr is the
liquid viscosity and 7oz the shear stress at the
wall.

The first aim was to calculate for a given gas
and liquid rate the appropriate values of u* and
y+ for insertion into equations (1) to (3).

If the assumption of constant shear stress
throughout the liquid film is made, the dimen-
sionless film thickness, y;", can be calculated from
the dimensionless film flow rate W+ which is
defined by:

i

== J utdy*

1}

Wirr

W —
27 roz pr

Q)

where Wir is the mass rate of flow in the film
(Ib/s), roz is the tube radius (ft) and pz the
liquid viscosity (Ib/ft s). By insertion of the
u™ vs y+ relationships given by the von Karman
equations [equations 25(a), (b) and (c) of
reference 1, with W replaced by u] and inte-
grating, the following equations are obtained
for the relation between W+ and y,:

W+ = 05 (y ) for y+ <5, (W+ < 12:5) (5)
Wt =125 4 5 yi In (3;/5) (6)

for 5 < yi < 30, (12:5 < W+ < 281-89)
W+ = — 6361 + 305y 4+ 2:5 i In y;-,
(W~ > 281-89)

The value of W+ is obtained simply from the
first part of equation (4), and y;" evaluated by
solution of equation (5), (6) or (7). In the case of
equations (6) and (7) this solution is obtained
iteratively. Values of W+ and y; for each con-
dition at which pressure drop was measured are
listed in Table 1 (columns 20 and 21).

The next stage in the analysis is the determina-
tion of u* [=+/(v02/pr)]. This determination is
not simple since the flow channel has one
smooth surface (the core rod) and one of

@)
for y;i > 30,
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variable roughness (i.e. the liquid film surface).
A method for analysing pressure drop data in
such channels has been developed recently and
is described in more detail elsewhere [7]. In this
analytical method, the channel is divided up into
two regions bounded by the plane of maximum
velocity (or zero shear) and by the respective
channel walls in the manner developed by Hall
[8). This is illustrated in Fig. 5. Equivalent
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F1G. 5. Regions of flow channel.

diameters, Reynolds numbers and friction fac-
tors are defined for the two regions as follows [7]:

2(r2 _ p2 2 (r2. . p2
dyy — 2(ry — 150  de = _Q_%:A,,,,,'L) 8. 9)
ro1 ro2
Ui d Uad G
Rey — 141 P¢ , Res = Y2 de2 pi (10, 11)
Jor pe
Fr — T01 - (dp/dl) . (de1/4)
1T peUd pe Ut ’
To2 (dp/dl) . (de2/4)
— - 2,
_—r 7 (12, 13)
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In equations (8-13), (dp/dl) is the pressure
gradient, rp the radius of zero shear, ro1 the
core rod radius, ro2 the tube inside radius, and
pe and pq the gas density and viscosity. Also,
Uy and Us and 701 and o2 are the mean velocities
and wall shear stresses for the two regions re-
spectively.

Three further equations are also introduced:

(i) Mass balance:
Ui — 1) + Us(rdy, — r2)
=Ur%—rs) (19
where U is the mean gas velocity.

(11) Smooth pipe law for the inner surface;
(the Koo equation):

F; = 0-00070 + 0-0625(Re;)032  (15)

(iii) An equation derived [7] by integration of
von Karmdn’s velocity deficiency law
equation, for each region of the annulus:

[\/Fz {_"m + 3 roz }+ 1]
{/:}__‘ k 2rm + 2 roz2 16)
Us [\/Fl{rm+3ro1 }+ 1] (

k 2rm+2rp
k = von Karman universal constant
(taken as 0-368).

With (dp/dl), pe, pe, ro1, roz and U known (as
in the present experiments) equations (8—16) can
be solved iteratively [7] to vield values of Res,
Res, de1, des, F1, F2, U1, Uz and ry respectively.
The computer programme was used to perform
such an iteration on the present data and the
results are tabulated in Table 1 (Columns 9-18).
The liquid friction velocity (u*) on the outer
wall was then readily calculated (column 22) and,
using also the value of y;" calculated as above, the
contact angle, 6, was calculated from equations
(1-3). The value of 6 was determined for each
flow condition at which the pressure drop had
been measured. The results are tabulated in
Table 1 (column 27) and are plotted in Fig. 6.
Each point on this graph represents the theo-
retical minimum wetting rate (abscissa) for the
contact angle given by the ordinate at the gas
rate indicated by the legend. As expected, the
minimum wetting rate decreases with decreasing
contact angle and increasing gas rate, By cross-
plotting of Fig. 6, curves of minimum wetting
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rate against gas rate can be obtained for constant
contact angle, and such curves are plotted in
Fig. 7 for contact angles of 50°, 40°, 30° and
17°, i.e. the angles theoretically necessary to
cause film breakdown. The value 17° was
chosen as giving a curve close to the actual
experimental minimum wetting rate data (Fig. 3),
which are also plotted in this diagram. The
agreement in shape with the curve for a wetting
angle of 17° is moderately good; the minimum
wetting rate falls below the curve at the lowest
and highest gas rates used. The deviation at the
lowest gas rate is probably due to the approach
to the regime boundary, as discussed above.

It was of interest to obtain a directly deter-
mined value of @ for the system water/acrylic-
resin-tube/air, and measurements were made
using a sessile drop within a short, horizontal
section of tube. This was viewed through a
rotatable telescope provided with a cross wire
which could be aligned with the tube surface or
the droplet surface.

The values obtained for @ nearly all lay in the
range 49 4 4°; this included new tubing, tubing
which had been soaked in water for a long period,
and tubing which had been used for air-water
experiments over a period of some years. With
new tubing, there were occasional spots which
had a higher contact angle—presumably as a
result of slight greasiness of the surface—but the
lowest value obtained in all the tests was 45°.

It is quite probable that the measured static
contact angle is not the appropriate one for use
in the Hartley-Murgatroyd theory; an ad-
vancing edge, however, would experience a
larger contact angle than the static one. The
theoretical treatment may not, therefore, be
valid although it predicts the correct trends. It
should be noted that the discrepancy in the
forces involved is large, being in the ratio of
(1 — cos 49°) to (1 — cos 17°), i.e. 7-8:1. The
minimum wetting rate is lower than would be
predicted from the theory and this suggests the
existence of an extra force tending to re-wet the
surface. This may possibly take the form of an
aerodynamic force on the bulge in the film
which occurs immediately below (i.e. upstream
of)) the dry patch. This “bulge” is caused by the
rise in static pressure due to the deceleration of
the liquid, and it can be argued that the Hartley—

G. F. HEWITT and P. M. C. LACEY

Murgatroyd equations should be derived for this
enlarged profile; the equation of motion of the
diverging fluid stream would be complex, but
to a first approximation the total force resisted
by surface forces would be proportional to the
maximum thickness of the film at the bulge,
which would therefore need to rise by a factor
of 7-8 over the film thickness. There is no evi-
dence for such a large increase, and aerodynamic
forces on the bulge are likely to provide the
largest contribution to the discrepancy.

Much of the analysis depends on the simpli-

fying assumption mentioned earlier, that the
shear stress is constant across the liquid film.
The validity of this assumption can be tested by
comparing the gravitational force on the liquid
film (=mprg, where m is the liquid film thick-
ness and g the acceleration due to gravity) with
702, the interfacial shear stress. m was calculated
from y;t and u*:
(17)
and values of m and mprg/702 are presented in
Table 1 (columns 23 and 24). It will be seen that
mprg is about 50 per cent of 7¢2 at the lowest gas
rate (100 Ib/h) falling to about 10 per cent at a
gas rate of about 250 1b/h and down to about
2 per cent at a gas rate of 500 lb/h. The error in
estimating y;~ from W+ is much less than the
error in wall shear stress and no attempt has been
made to improve the present analysis to take
account of the gravity term. Approximate
corrections and analyses relating W+ and y;" are
described in reference 9 and a rigorous analytical
method is presented in reference 10.

The pressure drop data were of interest in
their own right; in a recent report [5], a method
was presented for correlating two phase pressure
drop data at low liquid rates and high gas rates.
The correlation was obtained by plotting
calculated roughness height, (¢), against “re-
lative film thickness”. The relative film thick-
ness (m,) was the film thickness (calculated)
minus the thickness of the laminar sub-layer in
the gas phase; this parameter was used by
Hartley and Roberts [11]. The data were very
well correlated, but only one tube diameter had
been used. In the present experiments, the
equivalent diameter of the subchannel (see Fig.
5) is not a constant; intuitively, however, one

m = y;i pofu* pr,
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might regard it as permissible to divide both the
calculated roughness height and the relative
film thickness by the equivalent diameter and
plot €/d.s against my/des the latter being given

by:
Myldez = mjdez — 5/Res A/F2 (18)

For convenience, d/es was calculated from the
Colebrook-~White equationt [12]:
1 e/des 0-887
m = 13-02 In{ 37 Rez \/sz

The results of these calculations are given in

(19)

t In the correlation given in reference 5, the gas
boundary thickness was calculated as 5/Re+/(Fg) where
Fe is for the smooth pipe. Also, the Nikuradse curve was
used for calculating ¢; this is different from the Cole-
brook—White curve in the rough-smooth transition
region. Neither of the changes made will affect the results
seriously,

Table 1, and e/des is plotted against my/des in
Fig. 8. For total air rates above about 150 lb/h
the results fall fairly well on to a single curve.
(It should be borne in mind that as equation (19)
is logarithnic a fairly large error in estimating
(¢/de2) gives rise to only a small error in estimat-
ing F2.) The results for air flow rates less than
150 1b/h fall progressively further from the
correlating line; this is quite in accord with the
results given in reference 5 where data at 100 1b/h
(in a 1} in bore tube) fall well above the line and
data at 200 ib/h fell on it.

The correlating line from reference 5 is plotted
on Fig. 9; the agreement with the present data
for e€/de2 << 12 X 103 is encouraging. For
greater roughness ratios, the present datalieona
line above that from reference 5. It should be
borne in mind, however, that the data on which
the reference 5 line was based were extremely
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sparse in this region. Bearing in mind the extent
of the transformations required in the present
data, the results given in Fig. 9 give confidence
in the method of analysis.

5, CONCLUSIONS
The results of the experiments shown above
have demonstrated that, at least for higher gas
rates, the minimum wetting rate decreases con-
tinuously with increasing gas rate. This is in
agreement with the trend predicted by Hartley
and Murgatroyd but there appears to be a large

discrepancy between the contact angle required

to satisfy this theory and that measured. This
may indicate that there is an important additional
force, possibly aerodynamic, which promotes
wetting. At lower gas rates, as the regime
boundary between climbing film and churn
flow is approached, the relationship between
minimum wetting rate and gas flow rate reverses.

Spontaneous breakdown of the liquid film
from within itself was not observed in any of the
present experiments; breakdown at the liquid
injector occurred at flow rates about an order of
magnitude smaller than the “minimum wetting
rate”, the latter being the water rate required to
re-cover an artificial dry-patch. This result is of
importance in burnout considerations; the liquid
film will possibly not breakdown when it
becomes metastable but evaporation may con-
tinue until the film is depleted almost to zero
flow. This conclusion assumes, of course, that
the heat-transfer process itself cannot provide
the initiating force (analogous to the transverse
air jet in the present experiment) for breakdown.
Breakdown might be started by Marangoni
forces as discussed by Norman and Mclntyre
[13] or by bubble nucleation.
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Résumé—1.a disparition des films liquides peut étre la cause de la destruction par surchauffe dans les

régimes d’écoulement diphasique vapeur d’eau-eau a grande teneur en vapeur d’eau. Une recherche

de la disparition du film liquide dans ’écoulement annulaire air—eau est exposée, qui montre que les

films peuvent exister dans un état métastable et ne se briseront pas & moins qu’il y ait une perturbation

extérieure. Si une telle perturbation est fournie sous la forme d’une tache séche sur la surface solide,

alors de débit minimal d’eau pour lequel la tache sera remouillée diminuera lorsque Ia vitesse de la
phase gazeuse augmente.
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Zusammenfassung—Der Zusammenbruch des Fliissigkeitsfilmes kann vielleicht die Ursache fiir den
Burnout in den héheren Qualitéitsbereichen eines zweiphasigen Dampf-Wasserstromes sein. Fiir das
Zusammenbrechen eines Fliissigkeitsfilmes in einer Luft-Wasserringstromung wird eine Unter-
suchung angefiihrt, die aufzeigt, dass die Filme in einem metastabilen Zustand bestehen konnen und
sich nicht auflésen bis eine Storung von aussen auftritt, Wenn so eine Storung in Form einer trockenen
Stelle an der festen Oberfliche vorkommt, dann nimmt die minimale Wasserstromgeschwindigkeit,
bei der die Stelle wieder benetzt werden kann, ab unter Geschwindigkeitszunahme der Gasphase.

AHHOTANMA—PaspyiieHue KULKUX MIEHOK MO)KeT OKWTH IPHYMHON BHIopanua B Golee

BHICOKUX pPeXHMax IByX(asHOTO MOTOKA map-Boga. IIpoBefeno mccilegoBaHMe paspyIIeHUS

#UAKOM IJIEHKH B KOJBLEBOM NMOTOKE BO3AYX-BOJA, KOTOPOE MOKASHIBAET UTO IJIEHKH MOTYT

CYIUECTBOBATH B MeTACTACHIBHOM COCTOAHMHU M He PaspyIIATLCA JO TeX HOp, JOKA HeT BHeIl-

Hero BoamymeHnsa. Ecan nMeeTcA BO3MYIIeHNE B BUJIe CYXOr0 y4acTKa HA TBepHoil noBepXHO-

CTH, MHHEMAJBHAA CKOPOCTh TeueHHMA BOXHI, MPH KOTOPOM Y4YacTOK OyZAeT CHOBA CMOYEH,
YMeHbIIAeTCA 110 Mepe VBeJIMYEHMA CKOPOCTH ra3oBoit dassl.
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